Mathematical Induction 3

1. Prove that:
$$\frac{d^n}{dx^n}\sin x = \sin\left(x + \frac{n\pi}{2}\right)$$

Let
$$P(n)$$
 be the proposition: $\frac{d^n}{dx^n} \sin x = \sin \left(x + \frac{n\pi}{2}\right)$.

We like to use the Principle of Mathematical Induction to prove that P(n) is true $\forall n \epsilon$

For
$$P(1)$$
, $\frac{d}{dx}\sin x = \cos x = \sin\left(x + \frac{\pi}{2}\right)$. $\therefore P(1)$ is true.

Assume
$$P(k)$$
 is true for some $k\epsilon$, that is, $\frac{d^k}{dx^k}\sin x = \sin\left(x + \frac{k\pi}{2}\right) \dots (*)$

For
$$P(k+1)$$
,
$$\frac{d^{k+1}}{dx^{k+1}}\sin x = \frac{d}{dx}\left[\frac{d^k}{dx^k}\sin x\right] = \frac{d}{dx}\left[\sin\left(x + \frac{k\pi}{2}\right)\right] \text{ , by (*)}$$
$$= \cos\left(x + \frac{k\pi}{2}\right) = \sin\left[\frac{\pi}{2} + \left(x + \frac{k\pi}{2}\right)\right] = \sin\left[x + \frac{(k+1)\pi}{2}\right]$$

 $\therefore P(k+1)$ is true.

By the Principle of Mathematical Induction, P(n) is true $\forall n \epsilon$

2. Prove
$$1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2n-1)(2n+1) = \frac{n}{3}(4n^2 + 6n - 1)$$
 by mathematical induction.

The magic is to change the right hand side of the proposition to:

$$P(n): 1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2n-1)(2n+1) = \frac{1}{6}[(2n-1)(2n+1)(2n+3) + 3]$$

For
$$P(1)$$
, L.H.S. $=1 \times 3 = 3$, R.H.S. $=\frac{1}{6}[1 \times 3 \times 5 + 3] = 3$

Assume P(k) is true for some $k \in N$, that is

$$1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2k-1)(2k+1) = \frac{1}{6}[(2k-1)(2k+1)(2k+3) + 3] \dots (1)$$

For P(k+1).

$$1 \times 3 + 3 \times 5 + 5 \times 7 + \dots + (2k - 1)(2k + 1) + (2k + 1)(2k + 3)$$

$$= \frac{1}{6} [(2k - 1)(2k + 1)(2k + 3) + 3] + (2k + 1)(2k + 3) , by (1).$$

$$= \frac{1}{6} [(2k - 1)(2k + 1)(2k + 3) + 6(2k + 1)(2k + 3) + 3]$$

$$= \frac{1}{6}[(2k-1)(2k+1)(2k+3)+6(2k+1)(2k+$$

$$= \frac{1}{6} \{ (2k+1)(2k+3)[(2k-1)+6] + 3 \}$$

$$= \frac{1}{6} \{ (2k+1)(2k+3)(2k+5) + 3 \}$$

$$\therefore P(k+1)$$
 is true.

By the principle of mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

Why: Let
$$u_i = (2n-1)(2n+1)$$
, $v_i = (2n-1)(2n+1)(2n+3)$

It is not difficult to prove $u_i = \frac{1}{6}[v_i - v_{i-1}].$

Hence
$$\sum_{i=1}^{n} u_i = \frac{1}{6} \sum_{i=1}^{n} [v_i - v_{i-1}] = \frac{1}{6} (v_n - v_0) = \frac{1}{6} [(2n-1)(2n+1)(2n+3) + 3]$$

3. Prove
$$1^2 + 2^2 + 3^2 + \dots + (2n)^2 = \frac{n(2n+1)(4n+1)}{3}$$
 by any method.

Method 1 Mathematical Induction

Let
$$P(n): 1^2 + 2^2 + 3^2 + \dots + (2n)^2 = \frac{n(2n+1)(4n+1)}{3}$$

For
$$P(1)$$
, $LHS = 1^2 + 2^2 = 5 = \frac{1(2+1)(4+1)}{3} = RHS$, $\therefore P(1)$ is true.

Assume P(k) is true for some $k \in \mathbb{N}$, that is $1^2 + 2^2 + 3^2 + \dots + (2k)^2 = \frac{k(2k+1)(4k+1)}{3} \dots (1)$

For P(k+1),

$$1^{2} + 2^{2} + 3^{2} + \dots + (2k)^{2} + (2k+1)^{2} + (2k+2)^{2}$$

$$= \frac{k(2k+1)(4k+1)}{3} + (2k+1)^{2} + (2k+2)^{2} , \text{ by (1)}$$

$$= \frac{k(2k+1)(4k+1) + 3(2k+1)^{2} + 3[2k+2]^{2}}{3} = \frac{(2k+1)[k(4k+1) + 3(2k+1)] + 12[k+1]^{2}}{3}$$

$$= \frac{(2k+1)[4k^{2} + 7k + 3] + 12[k+1]^{2}}{3} = \frac{(2k+1)(k+1)(4k+3) + 12[k+1]^{2}}{3} = \frac{(k+1)[(2k+1)(4k+3) + 12(k+1)]}{3}$$

$$=\frac{(k+1)[8k^2+22k+15]}{3}=\frac{(k+1)(2k+3)(4k+5)}{3}$$

 $\therefore P(k+1)$ is true.

By the principle of mathematical induction, P(n) is true for all $n \in N$.

Method 2 Difference method (1)

Let
$$v_{2k} = \frac{k(2k+1)(4k+1)}{3} = \frac{(2n)(2k+1)(2(2k)+1)}{6}$$
, $v_{2k-1} = \frac{(2k-1)(2k)(4k-1)}{6}$

$$v_{2k} - v_{2k-1} = \frac{2k(2k+1)(4k+1) - (2k-1)(2k)(4k-1)}{6} = (2k)^2$$

Taking summation $\sum_{2k=1}^{2n} [v_{2k} - v_{2k-1}] = \sum_{2k=1}^{2n} (2k)^2$

$$\therefore \sum_{2k=1}^{2n} (2k)^2 = v_{2n} - v_0$$

$$\therefore 1^2 + 2^2 + 3^2 + \dots + (2n)^2 = \frac{n(2n+1)(4n+1)}{3}$$

Method 3 Difference method (2)

Consider
$$(k+1)^3 - (k-1)^3 = 6k^2 + 2$$

$$\sum_{k=1}^{2n} [(k+1)^3 - (k-1)^3] = 6 \sum_{k=1}^{2n} k^2 + \sum_{k=1}^{2n} 2^{2n} k^2 + \sum_{k=1}^{2n}$$

$$(2n+1)^3 + (2n)^3 - 1^3 - 0^3 = 6\sum_{k=1}^{2n} k^2 + 4n$$

$$\therefore \sum_{k=1}^{2n} k^2 = 1^2 + 2^2 + 3^2 + \dots + (2n)^2 = \frac{(2n+1)^3 + (2n)^3 - 1^3 - 0^3 - 4n}{6} = \frac{8n^3 + 6n^2 + n}{3} = \frac{n(2n+1)(4n+1)}{3}$$

4.
$$\int_0^{2\pi} \sin^{2n} x dx = \frac{2\pi (2n)!}{(n!)^2 (4^n)}$$

Let
$$P(n)$$
: $I_n = \int_0^{2\pi} \sin^{2n} x dx = \frac{2\pi(2n)!}{(n!)^2(4^n)}$

For
$$P(0)$$
, $LHS = \int_0^{2\pi} dx = 2\pi = RHS$, $\therefore P(0)$ is true.

Assume
$$P(k)$$
 is true for some $k \in N$, that is $I_k = \int_0^{2\pi} \sin^{2k} x dx = \frac{2\pi (2k)!}{(k!)^2 (4^k)} ... (1)$

For
$$P(k+1)$$
,

$$I_{k+1} = \int_0^{2\pi} \sin^{2(k+1)} x dx = -\int_0^{2\pi} \sin^{2k+1} x \ d(\cos x)$$

$$= -[\sin^{2n+1}x(\cos x)]_0^{2\pi} + \int_0^{2\pi}\cos x \ d(\sin^{2k+1}x)$$
 (Integration by parts)

$$= 0 + (2k+1) \int_0^{2\pi} \cos^2 x \sin^{2k} x \ dx (2k+1) \int_0^{2\pi} (1 - \sin^2 x) \sin^{2k} x \ dx$$

$$= (2k+1) \left[\int_0^{2\pi} \sin^{2k} x \ dx - \int_0^{2\pi} \sin^{2(k+1)} x dx \right]$$

$$= (2k+1) I_k - (2k+1) I_{k+1}$$

Solve for I_{k+1} and by (1) we have

$$I_{k+1} = \frac{(2k+1)}{(2k+2)} \; I_k = \frac{2\pi(2k)!}{(k!)^2(4^k)} \times \frac{(2k+1)}{(2k+2)} = \frac{2\pi(2k)!}{(k!)^2(4^k)} \times \frac{(2k+1)(2k+2)}{4(k+1)^2} = \frac{2\pi[2(k+1)]!}{[(k+1)!]^2(4^{k+1})}$$

$$\therefore P(k+1)$$
 is true.

By the Principle of mathematical induction, P(n) is true for all $n \in \mathbb{N} \cup \{0\}$.

5. Prove:

$$(1^5 + 2^5 + \dots + n^5) + (1^7 + 2^7 + \dots + n^7) = 2(1 + 2 + \dots + n)^4$$

Redefine the proposition into equivalent proposition:

Let
$$P(n)$$
: (a) $1 + 2 + \dots + n = \frac{n(n+1)}{2}$

(b)
$$(1^5 + 2^5 + \dots + n^5) + (1^7 + 2^7 + \dots + n^7) = \frac{1}{8}n^4(n+1)^4$$

For
$$P(1)$$
: (a) LHS = $1 = \frac{1(1+1)}{2} = RHS$

(b) LHS =
$$1^5 + 1^7 = 2 = \frac{1}{8}1^4(1+1)^4 = RHS$$

 $\therefore P(1)$ is true.

Assume P(k) is true for some $k \in N$, that is

(a)
$$1 + 2 + \dots + k = \frac{k(k+1)}{2} \dots (1)$$

(b)
$$(1^5 + 2^5 + \dots + k^5) + (1^7 + 2^7 + \dots + k^7) = \frac{1}{8}k^4(k+1)^4 \dots (2)$$

For P(k+1):

(a)
$$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)}{2}[k+2]$$
, by (1)

(b)
$$[1^5 + 2^5 + \dots + k^5 + (k+1)^5] + [1^7 + 2^7 + \dots + k^7 + (k+1)^7]$$

 $= \frac{1}{8}k^4(k+1)^4 + (k+1)^5 + (k+1)^7$, by (2)
 $= \frac{1}{8}(k+1)^4[k^4 + 8(k+1) + 8(k+1)^3]$
 $= \frac{1}{8}(k+1)^4[k^4 + 8k + 8 + 8(k^3 + 3k^2 + 3k + 1)]$
 $= \frac{1}{8}(k+1)^4[k^4 + 8k^3 + 24k^2 + 32k + 16]$
 $= \frac{1}{8}(k+1)^4(k+2)^4$

 $\therefore P(k+1)$ is true.

By the Principle of mathematical induction, P(n) is true for all $n \in N$.

6. Prove $5^{2n+1} + 11^{2n+1} + 17^{2n+1}$ is divisible by 33 for all non-negative integer value of n.

Let
$$P(n)$$
: $5^{2n+1} + 11^{2n+1} + 17^{2n+1} = 33a_n$ where $a_n \in \mathbb{N}, n \in \mathbb{N} \cup \{0\}$. For $P(0)$: $5^{2(0)+1} + 11^{2(0)+1} + 17^{2(0)+1} = 33 = 33a_0, \ a_0 = 1$ Assume $P(k)$ is true for some $k \in \mathbb{N}$ We have $5^{2k+1} + 11^{2k+1} + 17^{2k+1} = 33a_k \dots (1)$ For $P(k+1)$,

$$5^{2k+3} + 11^{2k+3} + 17^{2k+3}$$

$$= 25(5^{2k+1}) + 121(11^{2k+1}) + 289(17^{2k+1})$$

$$= 25[5^{2k+1} + 11^{2k+1} + 17^{2k+1}] + 96(11^{2k+1}) + 264(17^{2k+1})$$

$$= 25[33a_k] + (96)(11)(11^{2k}) + 264(17^{2k+1}), \text{ by } (1)$$

$$= 33[25a_k + 32(11^{2k}) + 8(17^{2k+1})]$$

$$= 33a_{k+1}$$

 $\therefore P(k+1)$ is true.

By the Principle of mathematical induction, P(n) is true for all $n \in \mathbb{N} \cup \{0\}$.

Prove, by Mathematical Induction, that n(n+1)(n+2)(n+3)...(n+r-1) is divisible by r!for all natural numbers n, where r = 1,2,...Let P(n): n(n+1)(n+2)(n+3)...(n+r-1) = r! is divisible by r!That is, n is divisible by 1!n(n + 1) is divisible by 2! n(n+1)(n+2) is divisible by 3! n(n+1)(n+2)(n+3) is divisible by 3! n(n+1)(n+2)(n+3)...(n+r-1) is divisible by r!1(1+1)(1+2)(1+3)...(1+r-1) = r! is obviously divisible by r!. For P(1), Assume P(k) is true for some $k \in N$, that is That is, k is divisible by $1! \dots eq(1)$ k(k+1) is divisible by $2! \dots eq(2)$ k(k+1)(k+2) is divisible by $3! \dots eq(3)$ k(k+1)(k+2)(k+3) is divisible by $4! \dots eq(4)$ $k(k+1)(k+2)(k+3) \dots (k+r-2)$ is divisible by $(r-1)! \dots eq(r-1)$ k(k+1)(k+2)(k+3)...(k+r-1) is divisible by r!...eq(r)For P(k+1), (1) k + 1 is divisible by 1! is true (2) (k+1)(k+2) = k(k+1) + 2(k+2) is divisible by 2! since by eq(2) k(k+1) is divisible by 2! and 2(k+2) is also divisible by 2! (3) (k+1)(k+2)(k+3) = k(k+1)(k+2) + 3(k+1)(k+2)k(k+1)(k+2) is divisible by 3!, by eq(3)(k+1)(k+2) is divisible by 2! (just proved in (2)) 3(k+1)(k+2) is divisible by $3 \times 2! = 3!$ Therefore (k + 1)(k + 2)(k + 3) is divisible by 3! (4) (k+1)(k+2)(k+3)(k+4) = k(k+1)(k+2)(k+3) + 4(k+1)(k+2)(k+3)k(k+1)(k+2)(k+3) is divisible by 4! by eq(4)(k+1)(k+2)(k+3) is divisible by 3! (just proved in (3)) 4(k+1)(k+2)(k+3) is divisible by $4 \times 3! = 4!$ Therefore (k+1)(k+2)(k+3)(k+4) is divisible by 4! (5) Up to (r-1)Continue in this way, by writing (k+1)(k+2)(k+3)...(k+r-1)(k+r)= k(k+1)(k+2)(k+3)...(k+r-1) + r(k+1)(k+2)(k+3)...(k+r-1)is divisible by r! since k(k+1)(k+2)(k+3)...(k+r-1) is divisible by r! by eq(r)

(k+1)(k+2)(k+3)...(k+r-1) is divisible by (r-1)!

7.

 $r(k+1)(k+2)(k+3)\dots(k+r-1) \text{ is divisible by } r(r-1)!=r!$ Therefore $(k+1)(k+2)(k+3)\dots(k+r-1)(k+r)$ is divisible by r! $\therefore P(k+1)$ is true.

By the Principle of mathematical induction, P(n) is true $\forall n \in N$.

Yue Kwok Choy 1/2/2021